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Synchronization of the mean velocity of a particle in stochastic ratchets with a running wave
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In this paper we investigate the motion of a particle in the overdamped one-dimensional system with a
spatially periodic potential under the influence of a sinusoidal wave and dichotbmary) noise. We dem-
onstrate the effect of synchronization between the mean velocity of a particle and the phase velocity of the
running wave controlled by the noise. The results of numerical simulation are in good agreement with a
full-scale experimen{.S1063-651X98)00207-4

PACS numbegps): 05.45+b, 05.40+]

Recently, there has been much interest in nonlinear protoes the nonlinearity of the system under study exhibit the
lems dealing with stochastic systems. In this kind of systemeffects such as phas&equency locking?

a variation of the parameters of external noise can qualita- We use the results obtained from a full-scale experiment
tively change the system’s regime of operation. The well-for the system with phase synchronization. Under certain
known example is stochastic resonance. In this case, noismnditions these electronic devices demonstrate the behavior
properties determine the type of response of a bistable sysf stochastic ratchet$8]. In this case, the motion of a
tem to external periodic forcingsee [1] and references Brownian particle is described in terms of the mutual phase
therein. Another example is the so-called stochastic ratchetshift between two coupled oscillators. The spatial periodicity
[2] describing nonlinear Brownian motion in a spatially pe-is provided by the zr periodicity of the phase.

riodic potential. In these systems, nonthermal fluctuations The mathematical model for the system in the over-
produce the directed motion of particles. The noise energgamped case can be given as

transforms into the energy of the particles’ motion. The fac-

tor that defines a direction and a mean velocity of the par- dx dV(x)
ticles’ flow is fluctuation statistics and the profile of the po- dt  dx
tential function, respectivelf3].

Stochastic ratchets can be considered as some sort @fherex is a spatial variable(t) is white Gaussian noise
problem of nonlinear transport along the spatially periodicyith (&£(1))=0,(£(t)&(t+ 7))=D&(7), D is the noise inten-
potential. Other transport mechanisms include so-called res@ity, andz(t) is a random process. All variables in Ed)
nant activatior{4], rocked ratchet§5], and particle motion  are dimensionless. We assume tBat-0; hence the trans-
by solitons[6]. _ _ port phenomena in stochastic ratchets are the result of the

The following question arises: What happens when morgtion ofz(t). V(x) is an asymmetric potential with spatial
than one factor has an influence on the particle motion alongeriodicity, i.e., the so-called ratchet potentidfig. 1).
the potential? A possible example can be found in the operg(x t) describes a wave force. Let us study the simplest case
tion of nerve cellgneurong where the ratchetlike chemically \yhen
based transport of neurotransmitters along the axon is ac-
companied by running electric impulséspikes [7]. f(x,t)=A sin (Qt—kx). 2)

In the present work we focus on the behavior of the sto-
chastic ratchet when an additional wave force is applied. Thejere the wave amplitudd is small enough to exclude the
observed effect can be described as concordance of the megarticle jumps wher(t)=0; Q is the frequency anid is the
velocity of the particle in stochastic ratchets with the phasevave number. The phase velocityig= Q/k. The condition
velocity of the forcing wave. The characteristics of externalfor the adiabatic approximation is
noise play the role of control parameters.

+f(x,t)+z(t) + &(1), 1)

In the stochastic ratchet, when transport takes place, the 73> 7> 1/Q), 3)
particle under transport moves randomly, but there is a non-
zero drift. The mean velocity of the particlg,, 20
T - or
Y P L 0
TJo T ¥ ool
>
whereT is observation time, depends on the noise intensity. ok A
We use the velocity averaged in time since it naturally fol-
lows from the task definition. Namely, we calculate to what 20 : L . . .
-10.0 -5.0 0.0 5.0 10.0 15.0

distance a single particle can be transported in the given
(long enough time.

Let us force the stochastic ratchet by the wave with phase FIG. 1. Asymmetric, spatially periodic potential functidf{x)
velocity v,. We are interested in the following question: = —sin (x)—sin (2)/4.
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FIG. 2. Numerically obtained dependencevgfon thez value ; 2o

for Eq. (1) and the rule for forming of the velocity distribution Z

If’(v,) from some distribution functio(z) of the applied random

process. FIG. 3. Mean velocity of the particley vs noise amplitud&.

(All variables are dimensionlesdl represents the case in which the
wave forcing is absent and 2 and 3 represent the case of the wave
with parameters ,=0.22 andA=0.5 for the full-scale experiment
and numerical simulation, respectively.

wherer, is the correlation time for(t) (long enoughandr
is the time interval we deal with. Assumirzgt) = const dur-
ing 7, one can calculate the dependenca;pf:fgk dt on ] ) o
thez value for Eq.(1). The resulty,=F(2) is plotted in Fig.  1his means that foll (T>r), z(t) switches finite times
2, where the rule for the transformation of some probabilityfrom +Z to —Z and from—Z to +Z. Thereforex(t) is a

density distribution functiofP(z) to the velocity distribution ~random process where the particle moves with velogity
P(v.) is shown as well. The dependencevafon z is stair- for half of the observation tim&. When the noise amplitude
like Twhich is similar to.the “Shapiro steps[9]. Z increases further, other situations are possible. For ex-

The average particle velocity now is ample, if z,<Z<|z|, one can obtainF(-2)=0, F(2)
=204, V4=V, €tC.
too too As z(t) we use the so-called binary noif&0] (see the
vdzf vTﬁ’(vr)dszf F(z)P(z)dz (4  Appendi®, which is characterized by the minimal time

between switchings. It corresponds to theconsidered
above. The results obtained are plotted in Fig. 3. In the case
Under the adiabatic approximatiary is defined byP(z)  \when the wave force vanishes, becomes nonzero for in-
only viaF(2) for the givenV(x) andf(x,t) in Eq.(1), while  ¢reasingz>0.75, achieves its maximum @t~1.5, and de-
the random procesg(t) can be both Markovian and non- creases ifZ increases furthetcurve 1. For very largeZ
Markovian. Belqw we can|der the case of a two-state ranyg|yes the potential shape becomes negligiblerapd 0 due
dom process with possible statés andZ,. For the sym-  to the symmetry of(t). The dependence described above is
metric caseZ; = —Z,=Z, whereZ is the noise amplitude. typjcal for stochastic ratchef8]. Based on experimental re-
The corresponding probability density is given by sults, we note that the presence of secondary peaks on curve
1 in Fig. 3 is typical for the case wheaft) is binary noise.
When the wave force is applied, one can see the region of
Z=0.35...,1.0wherevg is almost constant4~wv ,/2 and
the small region where ~v, (curves 2 and 3 in Fig.)3
wheres(y) is the Dirac delta function. According to EG), This means that the results of both the full-scale experiment
and numerical simulation confirm the mechanism of net cur-
1 1 rent stabilization discussed above. The adiabatic condition
UdZEF(Z)"- EF(_Z)' (6)  (3) is not satisfied during the experiments, but 10, 14
=45, andr>1/Q. It is reasonable that the small steps in
the vy dependence were not observed ¥or 1.4. Note that
the effect we discuss is the locking of the particle in the
stochastic ratchet by the running wave. At the locking,
=nvy, N=1,2,3 ....Figure 4 illustrates the locking effect
when the variation of the noise amplitudeand wave am-
plitude A takes place. It is easy to see the triangular zone that
is typical for synchronization phenomena both in the deter-

1 1 A _
vd=§F(Z)= SV @) E;_IHSUC case(Arnold tongue$ and for stochastic systems

P(z)=%5(z—2)+%5(z+2), (5)

Let us now analyze the results from Fig. 2. For small
enough noise amplitudeés<z,, F(Z)=F(—2)=0 for any
time and the particle does not moveyE0). For higher
valuesz,<Z<z, and Z<|z,, we obtainF(—Z)=0 and
F(Z)=v,. Thus
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APPENDIX: DEFINITION OF THE BINARY NOISE

The binary noise(t) is a non-Markovian two-state ran-
dom process when the switchings from one state to another
occur in discrete numbers of time moments. This is a more
realistic version of dichotomous noise. Any information sig-
nal in the binary code used by computers or other commu-
nication devices can be considered as an example. For the
symmetric case two possible states &2 and—Z. Assum-
ing that the first observed switching occurstgtEA, any
other switchings can take place at discrete numbers of mo-
mentst,,

te=kr+4, k=0,1,23.... (A1)

FIG. 4. Two-parametric dependence fof on A and Z. (All
variables are dimensionless.,=0.22. The flat triangular zone cor-
responds to the synchronization wf .

It is assumed thaA is the random value uniformly distrib-
uted within[ 0,7]; 7 is the time scale of binary noise, i.e., the
shortest possible time between two switchings. The probabil-

Thus, in the present work we have demonstrated a nonI:(y density reads

linear effect of wave synchronization controlled by noise. p(z,t)=P,(1)5(z—2)+P_(t)5(z+2), (A2)
The origin of this effect is the locking of the particle motion o ]
by the running wave. To observe that effect the sufficientiyWhere probabilitied .. (t) satisfy

!ong correlation time of the binary noisgt) appears to be d/P. —y 3y \[P.
important. — = (A3)
. _ dt\ P_ v  —vy/\P_
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