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Synchronization of the mean velocity of a particle in stochastic ratchets with a running wave

D. E. Postnov, A. P. Nikitin, and V. S. Anishchenko
Department of Physics, Saratov State University, Astrakhanskaya Street 83, 410026 Saratov, Russia

~Received 22 July 1997; revised manuscript received 17 February 1998!

In this paper we investigate the motion of a particle in the overdamped one-dimensional system with a
spatially periodic potential under the influence of a sinusoidal wave and dichotomic~binary! noise. We dem-
onstrate the effect of synchronization between the mean velocity of a particle and the phase velocity of the
running wave controlled by the noise. The results of numerical simulation are in good agreement with a
full-scale experiment.@S1063-651X~98!00207-4#

PACS number~s!: 05.45.1b, 05.40.1j
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Recently, there has been much interest in nonlinear p
lems dealing with stochastic systems. In this kind of syste
a variation of the parameters of external noise can qua
tively change the system’s regime of operation. The w
known example is stochastic resonance. In this case, n
properties determine the type of response of a bistable
tem to external periodic forcing~see @1# and references
therein!. Another example is the so-called stochastic ratch
@2# describing nonlinear Brownian motion in a spatially p
riodic potential. In these systems, nonthermal fluctuati
produce the directed motion of particles. The noise ene
transforms into the energy of the particles’ motion. The fa
tor that defines a direction and a mean velocity of the p
ticles’ flow is fluctuation statistics and the profile of the p
tential function, respectively@3#.

Stochastic ratchets can be considered as some so
problem of nonlinear transport along the spatially perio
potential. Other transport mechanisms include so-called r
nant activation@4#, rocked ratchets@5#, and particle motion
by solitons@6#.

The following question arises: What happens when m
than one factor has an influence on the particle motion al
the potential? A possible example can be found in the op
tion of nerve cells~neurons! where the ratchetlike chemicall
based transport of neurotransmitters along the axon is
companied by running electric impulses~spikes! @7#.

In the present work we focus on the behavior of the s
chastic ratchet when an additional wave force is applied.
observed effect can be described as concordance of the m
velocity of the particle in stochastic ratchets with the pha
velocity of the forcing wave. The characteristics of extern
noise play the role of control parameters.

In the stochastic ratchet, when transport takes place,
particle under transport moves randomly, but there is a n
zero drift. The mean velocity of the particlevd ,

vd5
1

TE0

T

ẋ~ t !dt5
x~T!2x~0!

T
,

whereT is observation time, depends on the noise intens
We use the velocity averaged in time since it naturally f
lows from the task definition. Namely, we calculate to wh
distance a single particle can be transported in the gi
~long enough! time.

Let us force the stochastic ratchet by the wave with ph
velocity vf . We are interested in the following questio
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Does the nonlinearity of the system under study exhibit
effects such as phase~frequency! locking?

We use the results obtained from a full-scale experim
for the system with phase synchronization. Under cert
conditions these electronic devices demonstrate the beha
of stochastic ratchets@8#. In this case, the motion of a
Brownian particle is described in terms of the mutual pha
shift between two coupled oscillators. The spatial periodic
is provided by the 2p periodicity of the phase.

The mathematical model for the system in the ov
damped case can be given as

dx

dt
52

dV~x!

dx
1 f ~x,t !1z~ t !1j~ t !, ~1!

wherex is a spatial variable,j(t) is white Gaussian noise
with ^j(t)&50, ^j(t)j(t1t)&5Dd(t), D is the noise inten-
sity, andz(t) is a random process. All variables in Eq.~1!
are dimensionless. We assume thatD→0; hence the trans
port phenomena in stochastic ratchets are the result of
action ofz(t). V(x) is an asymmetric potential with spatia
periodicity, i.e., the so-called ratchet potential~Fig. 1!.
f (x,t) describes a wave force. Let us study the simplest c
when

f ~x,t !5A sin ~Vt2kx!. ~2!

Here the wave amplitudeA is small enough to exclude th
particle jumps whenz(t)50; V is the frequency andk is the
wave number. The phase velocity isvf5V/k. The condition
for the adiabatic approximation is

tc@t@1/V, ~3!

FIG. 1. Asymmetric, spatially periodic potential functionV(x)
52sin (x)2sin (2x)/4.
1662 © 1998 The American Physical Society
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wheretc is the correlation time forz(t) ~long enough! andt
is the time interval we deal with. Assumingz(t)5const dur-
ing t, one can calculate the dependence ofvt5*0

t ẋ dt on
thez value for Eq.~1!. The resultvt5F(z) is plotted in Fig.
2, where the rule for the transformation of some probabi
density distribution functionP(z) to the velocity distribution
P̂(vt) is shown as well. The dependence ofvt on z is stair-
like, which is similar to the ‘‘Shapiro steps’’@9#.

The average particle velocity now is

vd5E
2`

1`

vtP̂~vt!dvt5E
2`

1`

F~z!P~z!dz. ~4!

Under the adiabatic approximationvd is defined byP(z)
only via F(z) for the givenV(x) and f (x,t) in Eq. ~1!, while
the random processz(t) can be both Markovian and non
Markovian. Below we consider the case of a two-state r
dom process with possible statesZ1 and Z2 . For the sym-
metric case,Z152Z25Z, whereZ is the noise amplitude
The corresponding probability density is given by

P~z!5
1

2
d~z2Z!1

1

2
d~z1Z!, ~5!

whered(y) is the Dirac delta function. According to Eq.~4!,

vd5
1

2
F~Z!1

1

2
F~2Z!. ~6!

Let us now analyze the results from Fig. 2. For sm
enough noise amplitudesZ,za , F(Z)5F(2Z)50 for any
time and the particle does not move (vd50). For higher
values za,Z,zb and Z,uzcu, we obtainF(2Z)50 and
F(Z)5vf . Thus

vd5
1

2
F~Z!5

1

2
vf . ~7!

FIG. 2. Numerically obtained dependence ofvd on thez value
for Eq. ~1! and the rule for forming of the velocity distributio

P̂(vt) from some distribution functionP(z) of the applied random
process.
y

-

l

This means that forT (T@t), z(t) switches finite times
from 1Z to 2Z and from2Z to 1Z. Therefore,ẋ(t) is a
random process where the particle moves with velocityvf
for half of the observation timeT. When the noise amplitude
Z increases further, other situations are possible. For
ample, if zb,Z,uzcu, one can obtainF(2Z)50, F(Z)
52vf , vd5vf , etc.

As z(t) we use the so-called binary noise@10# ~see the
Appendix!, which is characterized by the minimal timet
between switchings. It corresponds to thet considered
above. The results obtained are plotted in Fig. 3. In the c
when the wave force vanishesvd becomes nonzero for in
creasingZ.0.75, achieves its maximum atZ'1.5, and de-
creases ifZ increases further~curve 1!. For very largeZ
values the potential shape becomes negligible andvd→0 due
to the symmetry ofz(t). The dependence described above
typical for stochastic ratchets@3#. Based on experimental re
sults, we note that the presence of secondary peaks on c
1 in Fig. 3 is typical for the case whenz(t) is binary noise.
When the wave force is applied, one can see the region
Z50.35, . . . ,1.0wherevd is almost constantvd'vf/2 and
the small region wherevd'vf ~curves 2 and 3 in Fig. 3!.
This means that the results of both the full-scale experim
and numerical simulation confirm the mechanism of net c
rent stabilization discussed above. The adiabatic condi
~3! is not satisfied during the experiments, butt510, 1/V
54.5, andt.1/V. It is reasonable that the small steps
the vd dependence were not observed forZ.1.4. Note that
the effect we discuss is the locking of the particle in t
stochastic ratchet by the running wave. At the locking,vd
5nvf , n51,2,3, . . . . Figure 4 illustrates the locking effec
when the variation of the noise amplitudeZ and wave am-
plitudeA takes place. It is easy to see the triangular zone
is typical for synchronization phenomena both in the det
ministic case~Arnold tongues! and for stochastic system
@11#.

FIG. 3. Mean velocity of the particlevd vs noise amplitudeZ.
~All variables are dimensionless.! 1 represents the case in which th
wave forcing is absent and 2 and 3 represent the case of the w
with parametersvf50.22 andA50.5 for the full-scale experimen
and numerical simulation, respectively.
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Thus, in the present work we have demonstrated a n
linear effect of wave synchronization controlled by nois
The origin of this effect is the locking of the particle motio
by the running wave. To observe that effect the sufficien
long correlation time of the binary noisez(t) appears to be
important.

The authors would like to acknowledge Lutz Schimans
Geier and Fabio Marchesoni for helpful discussions a
critical comments. This work was supported by a comm
research project of DFG and RFRF@Grant No. 436 RUS
113/334/0~R!#.

FIG. 4. Two-parametric dependence forvd on A and Z. ~All
variables are dimensionless.! vf50.22. The flat triangular zone cor
responds to the synchronization ofvd .
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APPENDIX: DEFINITION OF THE BINARY NOISE

The binary noisez(t) is a non-Markovian two-state ran
dom process when the switchings from one state to ano
occur in discrete numbers of time moments. This is a m
realistic version of dichotomous noise. Any information si
nal in the binary code used by computers or other comm
nication devices can be considered as an example. For
symmetric case two possible states are1Z and2Z. Assum-
ing that the first observed switching occurs att05D, any
other switchings can take place at discrete numbers of
mentsts ,

ts5kt1D, k50,1,2,3, . . . . ~A1!

It is assumed thatD is the random value uniformly distrib
uted within@0,t#; t is the time scale of binary noise, i.e., th
shortest possible time between two switchings. The proba
ity density reads

p~z,t !5P1~ t !d~z2Z!1P2~ t !d~z1Z!, ~A2!

where probabilitiesP6(t) satisfy

d

dtS P1

P2
D 5S 2g g

g 2g D S P1

P2
D ~A3!

and

g5
1

2 (
k50

`

d~ t2kt2D!.
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